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Abstract. A traffic sign detection and recognition approach is presented in this paper. This project
is a part of the European research project PROMETHEUS (PROgraM for a European Traffic with
Highest Efficiency and Unprecedented Safety) and is being developed by DAIMLER BENZ in collab-
oration with various university labs. Intensity segmentation, shape and traffic sign recognition have
been joined together in a processing chain. Uncertainty handling, combining and propagation using
Dempster-Shafer rules form the heart of the shape recognition method. Multiple Knowledge Sources
extract information from the segmented image and increase knowledge about undefined shapes. Rec-
ognized shapes are transmitted to a high-level processing stage which performs model-based traffic

sign recognition.
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1. APPLICATION AREA

Humans nowadays move to fast for their physiol-
ogy. Traffic signs are designed to be emphasized
within natural scenes and offer an important vi-
sual cue by use of relevant color and appropri-
ate shapes. Moreover, traffic signs are submit-
ted to legislation, and color, shape, dimensions
as well as placement beside the roads are writ-
ten down in reference books (SR, 1987 or HAV,
1987). Traffic signs are therefore easy to model,
using elementary shapes, colors and spatial rela-
tions. Since the TSR (Traffic Sign Recognition)
project was begun in 1988, color was temporary
ignored, due to insuficient processing power to
handle this information. The main work was to
detect and extract the relevant shapes, known as
form primitives, from the images.

2. PROCESSING CHAIN
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Fig. 1. Processing chain

2.1.  Acquisition

Fig. 2. 512 x 512 grey-level image

A camera in the front of the vehicle transmits
images to electronics that should handle color as
well as Intensity information. Most of the equip-
ment conforms to the CCIR video-standard (in-
terlaced); an acquisition by a moving camera pro-
duces two slightly different half-ftames. The in-
formation able to be processed scales 512 points
x 256 lines. For some future work, the use of
a camera platform to cover an area of interest
within the view field should be more efficient for
TSR and especially for pictogram recognition.



2.2. Multiresolution segmentation with the HSC

A scale-space representation was chosen for the
segmentation step. The grey-level image is en-
coded in a HSC database. The HSC (Hierachical
Structure Code) was developed by Prof. Hart-
mann and his team at the university of Pader-
born (Hartmann, 1983; Hartmann, 1987). It is
a multiresolution description of the image, con-
stituted by a frequential image pyramid and a
linked pyramid. Segmentation extracts structure
information (edge, lines, ...) from each level of
the frequential pyramid. Then, a linked pyramid
grows up from each segmented level. Basic fea-
ture of the linking algorithm is to conserve conti-
nuity of structures. During linking, father-son
information is stored. A HSC-encoded shape will
looks like a tree where branches are the father-
sons pointers and the root marks the most upper
level within the linked pyramid where the struc-
ture of the shape appears.
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Fig. 3. Edge segmentation performed by the
HSC on a 256 x 256 window

2.3. Shape recognition

Our approach to shape recognition consists in
a collection of simple recognition tools, called
Knowledge Sources or KS , specialized or not
for certain form classes, and a method that com-
bines results issued by these KSs and decides
over a result (Besserer et al., 1993). These KSs
use well known algorithms and methods, and are
implemented to assure short execution time. An
implementation of the Dempster-Shafer rule is
used for combine the KSs’ results. This allows
the handling and updating of reliability values.
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2.4.  Traffic Sign Recognition

After form primitives are extracted by the
shape recognition step, hypotheses about the

presence of one or more traffic signs should be
made. A semantic network that models a set
of significant traflic signs is used (similar work
in Gamlich and Ritter, 1990). The development
and validation of this approach was done on a
Symbolics workstation, using LISP. Reliability
values about recognition of complete traffic signs,
or, by insufficient input data, values about traf-
fic sign classes, like danger signs or interdiction
signs, are outputted as final results.

3. EXPLOITATION OF HSC CODE

Fig. 4. Set of candidate edges by selecting roots
in the HSC hierarchical levels

Similar to other multiresolution image represen-
tation (Burt, 1988), exploitation begins with a
selection of relevant linking levels, related to the
application and the size of searched objects. We
are looking for roots in these levels. A root gives
us already some sparse information like the type
of structure and the fact this structure is open or
closed. Thanks to pointers to sons, a top-down
recursive process is started from candidate roots,
and leads to the extraction of a chain code de-
scribing the shape that generates this root. The
chain code is similar to a Freemann chain code.

4. SHAPE RECOGNITION USING
MULTIPLE KNOWLEDGE SOURCES

4.1. Knowledge Source definition

Since the Dempster-Shafer rules (see section 4.2.)
are used to represent, combine and propagate be-
liefs in hypothesis, the Knowledge Sources have
to conform to one criterion at least:

o Each KS has to bring enough evidence, es-
pecially to discriminate between classes.

¢ The number of independent K Ss has to be
large enough.



A KS takes its input data from the HSC
linked pyramid and extracts evidence state-
ments. The evidence is expressed concern-
ing the shape classes. Given © a finite set
of exclusive shape classes C1,Ca,...,Cn and
29 the set constituted by class disjunctions
(C]_,C]_ \% Cg,Cg,Cl \% Cg \% C3,...); Vs
the logical or operator. As © is not exhaustive,
it can easily be made so by including a rejection
class. A KS computes from the representation of
the unknown shape a vector m;, assigning values
to each disjunction. This vector m; is conform to
a basic probability assignment, given section 4.2.
The value that belongs to @, e.g., the disjunction
of all classes (C1 V Cz V ... V Cp) denotes
the uncertainty of the KS.

4.2. Shafer theory of evidence (Shafer, 1976)

Given O, a set of mutually exclusive elemen-
tary propositions, also called atomic hypotheses.
© is sometimes called the frame of discern-
ment. Shafer defines a function m: 2° — [0, 1]
called basic probability assignment (some-
times mass assignment) for each proposition or
disjunction of propositions:

m(#) =0, where @ is the null proposition and

Zm(S): 1

sce

m(S),S C © could be understood as the mea-
sure of belief constrained to S and free to move
within S. The Belief or lower probability func-
tion Bel : 2° — [0,1] is derived from the basic
probability assignment and defined by:

Bel(9) = Z m(S) for§ CO

5Cé

That means Bel(#) is the sum of probability
masses for all propositions that imply S. The
Plausibility or upper probability function P1:
29 — [0,1] is defined by:

Pl(6)= Y m(S) fordCoO
SNe£D

The problem consists in selecting a proposition
X € ©. A basic probability assignment m; as-
signs a probability mass to each subset of ©. For
example, m;(©) = 1 and m;(S) =0 for S # ©
denotes complete ignorance. Now a KS brings
new facts to our problem, in form of a basic prob-
ability assignment my. The combined evidence
through Dempster’s rule m = m; @ m; yields
knowledge in our problem of the actual state.
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Fig. 5. Synopsis of the method

4.3. Dempster’s rule

Given two frames of discernment m; and m;, the
Dempster’s rule of combination (Shafer, 1976,
Chapter 3) is denoted m = m; @ m; and is de-
fined by:

mS)=K Y. mi(S:)m;(S;)

$iNS;=S

K is a normalization factor, which gives a mea-
sure of the conflict or the inconsistency between
m; and m;.

El=1- > mi(S)m;(S;)

SinS;=0

4.4. Shape classes and form primitives

Concerning normalized European traffic signs,
relevant shapes for this application are the circle
(C), the triangle (T) and the polygon (P). These
classes C, T, P are the atomic hypothesis making
the frame of discernment © in this application.
To feed a semantic network that decides or not
if multiple shapes belong to a single sign, form
primitives are characterized by one of the shape
class, and attributes such as circumference and
area of the shape, the location within the image,
the coordinates of corner points for triangles and
polygons and at last, the reliability of recogni-
tion. The two tasks, classify and characterize

the shape, don’t necessarily rely upon the same
KSs.

5. KNOWLEDGE SOURCES

First, class characteristics are selected which
form guidelines for the set of Knowledge Sources;
KSs will be discriminative for the atomic hy-
pothesis. Information provided by the KSs are
pieces of evidences, in opposition to a logical (0 or
1) state.. Evidence is expressed as a basic prob-
ability assignment. Of course, segmentation
quality and KS invariance to rotation, transla-
tion and scale change must be take into account
and influences evidence corresponding to results.



Relationship between shape class, characteristics
and Knowledge Sources is summarized in follow-
ing table:

Class  Class Characteristic Knowledge Source

) 3 Main Directions —» Histogram
Triangle

T 3 Cormers —> Comer Detector
3 Acute Angles —> Histogram
Compactess max -— Compactness
Circle . .
e Constant Radius  ~— Signature
> 3 Main Directions ——> Histogram
Polygon No Constant Radius — Signature

> 3 Main Directions —> Histogram
> 3 Comners — Corner Detector

5.1. Histogram

The KS Histogram extracts main directions
within the chain coded object representation.
Histogram stores, for each chain code direction,
the amount of code elements. Main directions are
those which amounts of codes reach a given rate.
Evidence for a particular shape class is given by
the number of main directions. A considerable
number of main directions discard the class T.
An angle information could be found from the
histogram by studying angle interval between the
selected main directions: each entry of the his-
togram corresponds to one of the twelve possible
chain code discrete directions. An interval be-
tween two consecutive directions is an angle of
30 degrees. In this way, Histogram expresses
the sharpness of angles sketched by two main di-
rections. Therefore, another evidence is returned
by Histogram which depends on angle sharp-
ness and regularity.

5.2. Signature

Due to the discrete nature of the chain code,
matching the unknown object chain code with
an ideal circle is a suitable method to separate
the constant radius characteristic. According to
chain code size N, of unknown object, a chain
code model of an ideal circle is scaled by:

for 0 < i< N, Direction[i] = E(i.step)

Ndl'r

with step =

[+
Ny, is the number of discrete directions in the
used chain code, and Direction[s] is the discrete
direction of the ith chain code element in the cir-
cle model. The chain code of the unknown object
could begin with any direction: it is shifted to fit

the start direction of model chain code before
matching.

A matching error is computed from both object
and model chain code by:

St Al
N,

Afi}= (Directionobject[i] — Direction mode[i}) mod 6

£ =

x = 6 for our chain code

Evidence for shape classes is related to this
matching error and a threshold given by the user.
The Signature XS looks like curvaiure versus
length or y-function analysis. Similar work is
found in (O’Rourke, 1985).

5.3. Corner detection

The corner detection used here is a local method
that operates on short code sequences and exam-
ine local curvature. From a mathematical point
of view, corners on a curve (or more generally
angles) exist if the right derivative differs from
the left derivative. Adapted to our chain code,
the Corner XS compares downstream and up-
stream directions of the chain code in relation
with a middle point. If these directions differ
and the difference exceeds a predefined value, the
middle point is seen as a corner point. According
to Cheng and Hsu, 1989, DF; (respectivly DB;)
is the 7th chain code direction upstream (respec-
tivly downstream) from the current point. The
current point is the location between two chain
code elements. This point is candidate to be a
corner point if DFg # DBy. In this case, a for-
ward and a backward bending direction are com-
puted:

! !
BVie=|Y  W(DF: -DF)-Y  W(DBi-DF)
i=1 i=1
l i
BVosck=|> W(DBi~DBo)—y _ W(DF:~DBo)
i=1 i=1

where | represents the amount of chain code ele-
ments used for upstream or downstream compu-
tation. W is the function defined by:

1 f0<Ad< Zor —1r<Ad<—-12r'

0 ifad=0
W(ad)={ -1 if —F<Ad<OorF<Ad<m

+1 if Ad = % according to the sign
of the value of 3i_ W(Ad)

In a discrete representation using twelve possi-
ble directions, coded from 0 to 11, # = 6 and
2r = 12 or 0. W/(Ad) represents the effect of
direction change. The bending value increases if
a direction change occurs counterclockwise and
decreases if a change occurs clockwise. To be a
corner point, both BVier and BVhack should be
greater than a threshold.



5.4. Compactness

Compactness allows discrimination between
compact and elongated shapes. The compact-
ness is the ratio given by object surface S to the
square of object perimeter P2, normalized by a
factor. The circle has the highest compactness,
equal to 1. Thus, the compactness equals:

Compactness = %S_
Surface and perimeter are computed from the ob-

ject chain code.

6. HEURISTICS

Knowledge Sources performance and the slight
differences between classification and characteri-
zation led us to use heuristics that increase per-
formance of our system. The decision to ap-
ply a specific KS is driven by the heuristics and
the plausibility value for each class, because the
plausibility reacts swiftly to new knowledge in-
puts. The “exit” condition, that stops the pro-
cess when a shape is classified, relies on belief
values, which are the strong evidence for each
class.

7. EDGE FRAGMENTS

Segmentation stage creates many open edge frag-
ments, even for outside boundaries. Some of
them hold information that could be used for
traffic sign recognition. This information is all
the more important because color isn’t processed
yet. The recognition stage applied to open edge
fragments doesn’t try to find parts of traffic
signs, but recognize basic shapes, similar to form
primitives for closed boundaries. Long shape
fragments are split in elementary “open” form
primitives such as circle arcs and lines. These
“open” form primitives are characterised like
“closed” form primitives (see section 4.4.) and
sent to the semantic network.

8. TRAFFIC SIGN RECOGNITION

8.1. Shapes used for traffic sign modelisation

Traffic signs on European highways admit four
major kinds of shapes:

e Circular shapes for interdiction signs, such
as speed limit, overtaking interdiction,.. .,

and their respective “end of interdiction”.

e Triangular shape for warning signs.

e Quadratic shape for direction and miscel-
laneous indications. This class is exten-
sive, while indication panels are sometimes
higher than large, or vice-versa. because
the geometry of the shape has anyway to
be checked by the traffic sign recognition
stage, these shapes are recognized as poly-
gons; the amount of detected corners holds
enough information for the interpretation.

e Polygonal shape, octagon for stop signs,
pentagon or hexagon for arrow-shaped
signs.

8.2. Semantic network

Shortly, the semantic network records informa-
tion about signs, shapes, pictograms, location
relations and color. The form primitives,
grouped in blocks, are matched to shape nodes.
Location relations (inside, centered, ...) are
modelled as weighted links between nodes. Anal-
ysis is done, for each block, from the outer to
the inner shape. Matching reliability and rela-
tion goodness is evaluted to express a hypothesis
about the existence of a particular traffic sign or
a traffic sign class (interdiction, danger, ...).

It is possible that the outer boundary of the traf-
fic sign is broken. In this case, “closed” form
primitives are mapped deeper in the network.
Then, the traffic sign recognition process tries
to find within the “open” form primitives a
shape fragment that should be completed to fit
a network node and increase the truthfulness of
a hypothesis. For further information, refeer to
Reichardt, 1992. In the actual implementation,
color and pictograms are simulated.
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Fig. 6. Traffic sign modelling by semantic net



9. RESULTS

Fig. 7. Rebuilding of the image using recognized
form primitives

B-1 ~——e———p CLASS1 0.811
B-2 ————®» NOT-CLASSIFIED
B=3 =e—eme—e—fp- NOT-CLASSIFIED
8-4 ————1Jp CLASSS 0.966
B-5 e———e——Jp~ CLASSS 0.963
B-6 —————p~ CLASS2 0.864

Fig. 8. Candidate block as well as results of
traffic sign recognition (below). Please note the
completion of the outer boundary of the right-
most sign

10. CONCLUSION

A nearby complete traffic sign recognition sys-
tem is suggested in this paper. The complete
processing chain was tested and his structure al-
lows to develop each part further. The frame-
work (combining multiple KSs) used for shape
recognition permits calculation of reliability vai-
ues at recognition step, combining them with
reliability values supplied by the segmentation
step, if any (a similar approach is used by Wes-
ley and Hanson, 1982). Using Dempster-Shafer’s
evidence theory unfortunately limits the amount

of exclusive classes, but provides large flexibility
for amount and type of KSs used. Extensions
using other representations like color are easy to
integrate. Semantic networks are well suitable
to record traffic sign models, and the final traffic
sign recognition step works well. In the final im-
plementation, real-time should be reached. The
present work and results come from a preliminary
study running on a workstation.
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