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Abstract

This paper discusses an approach to automatic ve-
hicle guidance on a motorway with the intention of
avoiding collisions. The aulonomous vehicle should be
able to manage the tasks of a driver. Therefore it has
to manage complex traffic situations in real time.

Environment information is provided by several vi-
ston sensor modules and stored in a central dynamic
database. A system view of the environment is gener-
ated by data fusion and data interpretation based on
data stored in the dynamic data base that represents
the current scene. This sysiem view s transformed
into a riskmap representation which integrates infor-
mation about the streel, the relative position and speed
of obstacles and traffic signs.

The riskmap is an egocentric map of potentials re-
flecting the risk at a certain position in the environ-
ment. These potentials are interpreted as charged
points repelling the vehicle which is intepreted as an
electron within an electric field. The field intensity
vector that is computed for the map center is then
taken to determine thr required values for velocities
in longitudinal and lateral direction which are passed
to a lower level controller.

In order to achieve "humanlike” behaviour, each
riskmap 1s built according to a driver model and a ve-
hicle model.

1 Introduction

T'or the pilot of an airplane the autopilot has be
come a very useful assistant. A similar technological
support for the driver of a passenger car is conceivable.
During a long journey on the motorway, the attention

of a human driver is not always high enough. There-
fore the small number of critical situations occurring
during the journey can cause accidents. The traffic on
the motorway is less complex compared to city traffic.
Therefore this domain has been chosen to demonstrate
the feasibility of autonomous driving. In the following
sections such a system will be discussed.

The basic tasks are lane keeping and staying at a
given velocity. The autopilot has to adapt to the sit-
uation that it is confronted with. It has to keep safe
distances to other traffic participants, to overtake if
necessary and to follow traffic regulations.

This paper presents a method that realizes the be-
haviour control level of such an autopilot. It is de-
signed in a way that enables the autonomous vehicle
to cope with almost any traffic situation.

2 The Electric Field Model

The approach presented here follows the artificial
potential field method for autonomous mobile robots
[KHARS, KROR4, KT86, SD92]. A potential field ap-
proach has also been presented for automatic guidance
of ships [M88]. In contrast to the static environment
of an autonomous mobile robot, the environment of a
car on the motorway is dynamic. Furthermore driv-
ing on a motorway implies adaptation to traffic regu-
lations, vehicle dynamics, and driver intentions apart
from the path finding task of a robot. The human
driver takes this knowledge into account during his
information processing.

The electric field method consists of two parts.
First, the representation of the environment as an ego-
centric map of potentials reflecting the risk at a certain
position in the environment. Second, the evaluation
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Figure 1: The human driver perceives environment in-
formation mainly by vision. This information s pro-
cessed 1o gemnerate reactions with the use of knowledge
about behaviour of traffic participants and about traffic
requlations. Furthermore the driver’s intentions and
plans influence his reactions. When building an au-
tonomous vehicle this information processing scheme
1s adapted.
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Figure 2: This potential field shows a simple traffic
scenario with an obstacle ahead and a road with two
lanes. The forces gemerated by the electric field guide
the vehicle along the indicated trajectory.

of this map by interpreting the potentinls as charged
points repelling the vehicle which is interpreted as an
electron in this model. The forces that take effect
on the virtual electron are mapped onto nominal val-
ues for velocities and accelerations passed to low level
algorithms for longitudinal and lateral control of the
vehicle. Figure 2 shows the principle of the electric
field approach.

During construction of the risk map, a driver model
and a vehicle model are taken into account. The infor-
mation processing performed by the autonomous vehi-
cle is intended to be 'humanlike’. Visual information
passes a filter mechanism that relies on background
information classifying objects according to their dan-
ger potential. If an object is regarded as dangerous
it becomes the stimulus for a reaction. In a similar
way, knowledge about traffic regulations influences ve-
hicle behaviour. Especially traffic signs are regarded
as stimuli for domain concurring behaviour.

Both the classification and the reaction differ from
driver to driver. By exchanging the underlying driver
model the autonomous vehicle is able to adapt to the
driver type. The reaction does not only depend on the
driver but also on the vehicle. The dynamics of the car
are assumed to be known. Therefore they are treated
as constraints on the autonomous vehicle’s behaviour.

2.1 System Overview

Before explaining any details, this section should
give an overview of the system in which the described
method 1s embedded as the behaviour control module.

The input data is provided by a number of video
based sensor modules.

o A Road Tracker module gives information about
the street, its curvature, its number of lanes and
the current position of the autonomous vehicle.

e Obstacle Detection modules detect and track
other cars around the autonomous vehicle and de-
termine their velocities, their distances and their
relative positions.

e A Traffic Sign Recognition module detects and
classifies traffic signs.

All these modules work in real time and communi-
cate via a dynamic database. This database carries
symbolic data describing the current situation and the
state of the autonomous vehicle.

Within a system cycle the behaviour control mod-
ule reads data from the dynamic database and trans-
forms it into a set of partial risk maps for the road,



for obstacles und for the driver’s intention. Then these
maps are combined to a single one. A force vector is
determined by interpreting the map as an electric field.
This force vector is transformed into nominal values
for longitudinal and lateral control which are passed
to a vehicle control module via the dynamic database.
The vehicle control module has direct access to vehicle
actuators.

2.2 Electric Field

The environment of the autonomous vehicle is rep-
resented as an egocentric map. Each coordinate is
interpreted as a charged particle. To each coordinate
(i) of the map charged with L(i,j) the directed field
force E4v(; ;) is determined by

Eavg = L(5,7) E——Z—(;\/—l——-_?;;)_s (1)

The force vector for the map center is then determined
by

Eav =) FEav(j) (2)
i,j
The force vector E4v is used to determine the accel-
eration and direction of the autonomous vehicle.

2.3 Potential Field

The method used to determine vehicle movement
seems to be very simple at the first glance. However,
the main task is not the force vector computation but
the comstruction of the potential field. The way how
the potential field is constructed for autonomous driv-
ing on a motorway will be discussed in this section.

2.3.1 Representation of the Road

Assuming that there are no obstacles present in the
current scene, the only task of the autonomous vehicle
i1s to keep the lane. For simplification we start by
focusing on the lateral forces.

The attractive point for the vehicle is the lane cen-
ter. Small offsets are tolerated by generating low po-
tentials. If the vehicle drifts towards the lane markings
higher potentials are generated, always considering the
vehicle dynamics. Apart from the position of the ve-
hicle, its velocity and direction are taken into account.

Approaching the borderlines of the road is regarded
as extremely dangerous. Therefore the potentials are
chosen much higher than those which avoid the leaving
of a lane.
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Figure 3: The above image shows the profile of a lon-
gitudinal cut through the potential field and the as-
stociated forces. In the underlying scene there is an
obstacle in front of the autonomous vehicle which s
represented by a hill. The height and ascent of the hall
correspond to the relative speed of the obstacle. The
autonomous vehicle moves at a lower speed than the
desired travel speed. This is represented by a sloping
set of potentials along the street. The negative force
value at the position of the autonomous vehicle causes
the vehicle to decelerate.

2.3.2 Representation of the Driver’s Intention

The driver is able to set a desired speed!. If the cur-
rent velocity is too low, higher potentials are generated
behind the vehicle. This invokes forces that accelerate
the vehicle. Accordingly the vehicle can be deceler-
ated by generating a higher potential in front of the
car.

2.3.3 Representation of Obstacles

Many potential field approaches represent obstacles as
hills sloping towards the the obstacle borders. Krogh
and Thorpe [KT86] describe obstacles based on posi-
tion and direction of the steered vehicle. The obstacle
representation described here follows this approach.
The higher the probability of a collision the higher
the risk associated with the involved obstacle is cho-
sen. Every obstacle that is considered as a risk gener-
ates longitudinal and lateral reactions of the vehicle.
An obstacle in front invokes repelling potentials that

11t is possible to add a navigation component to the system.
The driver’s task is then reduced to input the destination and
the time for the journey.
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Figure 4: The above image shows the profile of a lat-
eral cut through the potential field and the associated
forces. The autonomous vehicle moves on a road with
two lanes. An obstacle on the right lane "fills the right
valley”. This induces a negative force value at the po-
sition of the autonomous vehicle which makes the ve-
hicle move to the left.

force the autonomous vehicle to decelerate and keep a
safe distance. The same obstacle induces potentials
that make the autonomous vehicle change lanes to
overtake it. The figures 3 and 4 show how the elec-
tric field generates forces which are used to guide the
vehicle.

The information about which distance to keep
stems from a driver model and a traffic regulations
knowledge base. This knowledge base also gives infor-
mation about the preferences of the virtual driver. If
the autonomous vehicle approaches an obstacle it can
react by changing lanes or decelerating.

When passing an obstacle the reaction on it de-
pends on the direction in which the autonamuous vehi-
cle moves. If both cars move in parallel, no reaction is
necessary. Yet, if the lateral distance is less than the
distance requested by the virtual driver, an obstacle
hill is created.

To improve reactions on other traffic participants
knowledge about their behaviour is used. If a vehi-
cle approaches from behind, it is assumed that it will
change lanes to overtake. Therefore it is not neces-
sary to accelerate to avoid a collision. The potentials
generated by this approaching vehicle follow its as-
sumed future trajectory (see figure 5). This reduces
the repulsion from behind. On the other hand this
representation of the approaching vehicle keeps the
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Figure 5: The assumption that a vehicle approaching
from behind intends to overtake leads to the above rep-
resentation.

autonomous vehicle from overtaking another obstacle
in front.

2.3.4 Representation of Traffic Regulations

Up to now potentials have been associated with risks.
A traffic regulation is not a concrete risk but a domain
constraint. Traffic regulations can either be of perma-
nent validity or indicated by traffic signs. One of the
permanent regulations is the precept to drive on the
rightmost lane?. When driving on a motorway with
more than one lane, potentials are set onto the left
lanes to make the vehicle move towards the rightmost
lane. These potentials are so low that any kind of ob-
stacle generates higher ones. This allows automatic
overtaking.

There are different ways to realize an overtaking
prohibition on the right side of an obstacle®. The au-
tonomous vehicle can be forced to change lanes and
place itself behind the obstacle or it can be told to
decelerate to avoid passing.

A speed limit indicated by a traffic sign is treated
comparable to the driver’s intended speed (see 2.3.2).

If a traffic sign is detected that forbids overtaking,
potentials are sct onto the left lane that hinder the
vehicle to overtake. Furthermore, the ’hill’ of an ob-
stacle ahead is expanded to the left lane to keep the
autonomous vehicle from passing it.

2The precept to drive on the rightmost lane is valid on the
German Autobahn.
30n the German Autobahn right overtaking is not allowed.



2.3.5 Partial Field Fusion

The sections above discuss how to generate the partial
potential fields for a number of possible events and do-
main constraints. These partial potentials have to be
combined to a single representation to react correctly
on every possible combination of risks.

As remarked when discussing ’right driving’, there
are different weights for partial potential fields. To dis-
tinguish between emergency reactions, preventive ac-
tions, driver’s intentions and traffic regulations, they
are associated with a set of weights. These weights
are part of the driver model.

How can a weighting of partial potentials be real-
ized? First of all the partial potential fields are nor-
malized by subtracting the potential at the origin of
the coordinate system from the field potentials.

During the combination phase, the generated par-
tial potential fields are shifted up relative to their
weight. Then they are combined with a maximum
function. Finally the resulting potential field is nor-
malized again. It should be noted that any partial
potential field is created and valid if and only if the un-
derlying stimulus is found in the current traffic scene.

2.4 First Results

The method described above has been implemented
on a PC and on a transputer system. First results are
taken from a simulation environment. In this environ-
ment the autonomous vehicle demonstrated accurate
behaviour. Apart from lane keeping, distance keeping
and overtaking it solved dangerous situations caused
by manoeuvers of other vehicles.

With the help of some simplifications made on the
complex theoretical model the system is running on
PC in real time. This was achieved by reducing the
potential field to a set of peaks. The loss of exactness
was tolerable for simulation.

3 Conclusion

Regarding the target as an attractive pole and
the environment as repelling charges, an electric field
forces a charged particle on a trajectory that leads to
the goal whenever there is an accessible path. What
we get 1s a local operator for a global path. De-
cuyper and Keymeulen [DK92] present another ap-
proach leading to a similar local operator based on a
fluid dynamics metaphor.

The representation of the environment is rather
complicated. As we intend to present a passenger car

guided by the system described above, our main task
is to find a way to reduce complexity while keeping a
high level of accuracy.

The system presented here is an approach that
draws a direct link between behaviour decision and ve-
hicle guidance. Its reactions are continuous in contrast
to the discrete states of an automat. The principle of
composing the reaction on a scenario of a number of
reactions on single events makes it capable of dealing
with unknown situations.

The next step will be the expansion of the method
by a planning component that detects critical situa-
tions in advance which helps to model more ’human-
like’ behaviour. To improve the behaviour of the au-
tonomous vehicle it is planned to consider the inter-
dependencies of different stimuli and reactions.
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